exRNA Research
in Cell Press

Cell Press recently published 18 articles from the ERCC, a capstone to 5 years of research during Stage 1.

Illinois researchers developed a method to detect microRNA cancer markers with single-molecule resolution, a technique that could be used for liquid biopsies.

From left: Taylor Canady, postdoctoral scholar; Andrew Smith, professor of bioengineering; Nantao Li, graduate student; Lucas Smith, postdoctoral scholar; and Brian Cunningham – professor of Electrical and Computer Engineering; director of Micro and Nanotechnology Laboratory.
Photo by L. Brian Stauffer

Thanks to the University of Illinois News Bureau for allowing us to share this article here.

CHAMPAIGN, Ill. — A fast, inexpensive yet sensitive technique to detect cancer markers is bringing researchers closer to a liquid biopsy – a test using a small sample of blood or serum to detect cancer, rather than the invasive tissue sampling routinely used for diagnosis.

Researchers at the University of Illinois developed a method to capture and count cancer-associated microRNAs, or tiny bits of messenger molecules that are exuded from cells and can be detected in blood or serum, with single-molecule resolution. The team published its results in the Proceedings of the National Academy of Science.

“Cancer cells contain gene mutations that enable them to proliferate out of control and to evade the immune system, and some of those mutations turn up in microRNAs,” said study leader Brian Cunningham, an Illinois professor of electrical and computer engineering. Cunningham also directs the Holonyak Micro and Nanotechnology Lab at Illinois.

“There are specific microRNA molecules whose presence and concentration is known to be related to the presence and aggressiveness of specific types of cancer, so they are known as biomarkers that can be the target molecule for a diagnostic test,” he said.

Cunningham’s group developed a technique named Photonic Resonator Absorption Microscopy to capture and count microRNA biomarkers. In collaboration with professor Manish Kohli at the Moffitt Cancer Center in Florida, they tested PRAM on two microRNAs that are known markers for prostate cancer.

They found it was sensitive enough to detect small amounts that would be present in a patient’s serum, yet also selective enough to detect the marker among a cocktail of molecules that also would be present in serum.

“One of the main challenges of biosensing is to maintain sensitivity and selectivity at the same time,” said Nantao Li, a graduate student and co-first author. “You want it to be sensitive enough to detect very small amounts, but you don’t want it to pick up every RNA in the blood. You want this specific sequence to be your target.”
 

Each dot seen in this PRAM image represents one microRNA that has bound to the sensor.
Image courtesy of Nantao Li

 

PRAM achieves both qualities by combining a molecular probe and a photonic crystal sensor. The probe very specifically pairs to a designated microRNA and has a protective cap that comes off when it finds and binds to the target biomarker. The exposed end of the probe can then bind to the sensor, producing a signal visible through a microscope.

Each individual probe that binds sends a separate signal that the researchers can count. This means researchers are able to detect much smaller amounts than traditional methods like fluorescence, which need to exceed a certain threshold to emit a measurable signal. Being able to count each biomarker also carries the added benefit of allowing researchers to monitor changes in the concentration of the biomarker over time.

“With PRAM, we squirt a sample into a solution and get a readout within two hours,” said postdoctoral researcher Taylor Canady, a co-first author of the study. “Other technologies that produce single-molecule readouts require extra processing and additional steps, and they require a day or more of waiting. PRAM seems like something that could be much more feasible clinically. In addition, by using an optical signal instead of fluorescence, we could one day build a miniaturized device that doesn’t need a trained laboratory technician.”

The PRAM approach could be adapted to different microRNAs or other biomarkers, the researchers say, and is compatible with existing microscope platforms.

“This approach makes the idea of performing a ‘liquid biopsy’ for low-concentration cancer-related molecules a step closer to reality,” Cunningham said. “This advance demonstrates that it is possible to have an inexpensive and routine method that is sensitive enough to require only a droplet of blood. The results of the test might tell a physician whether a regimen of chemotherapy is working, whether a person’s cancer is developing a new mutation that would make it resistant to a drug, or whether a person who had been previously treated for cancer might be having a remission.”

The Carl R. Woese Institute for Genomic Biology at the U. of I. and the National Institutes of Health supported this work. Illinois chemistry professor Yi Lu and bioengineering professor Andrew Smith were coauthors of the work.

Reference
Canady TD, Li N, Smith LD, Lu Y, Kohli M, Smith AM & Cunningham BT. Digital-resolution detection of microRNA with single-base selectivity by photonic resonator absorption microscopy. Proc Natl Acad Sci U S A. (2019) 116:19362-19367. doi: 10.1073/pnas.1904770116 PMID: 31501320

Thanks to Eileen Leahy from Elsevier and Chhavi Chauhan, Director of Scientific Outreach for the Journal of Molecular Diagnostics, for sharing this post here.

A novel non-invasive technique may detect human papilloma virus-16, the strain associated with oropharyngeal cancer, in saliva samples, reports The Journal of Molecular Diagnostics.

Philadelphia, December 13, 2019 – Unfortunately, cancers that occur in the back of the mouth and upper throat are often not diagnosed until they become advanced, partly because their location makes them difficult to see during routine clinical exams. A report in The Journal of Molecular Diagnostics, published by Elsevier, describes the use of acoustofluidics, a new non-invasive method that analyzes saliva for the presence of human papilloma virus (HPV)-16, the pathogenic strain associated with oropharyngeal cancers (OPCs). This novel technique detected OPC in whole saliva in 40 percent of patients tested and 80 percent of co published by Elsevier, describes the use of acoustofluidics, a new non-invasive method that analyzes saliva for the presence of human papilloma virus (HPV)-16, the pathogenic strain associated with oropharyngeal cancers (OPCs). This novel technique detected OPC in whole saliva in 40 percent of patients tested and 80 percent of confirmed OPC patients.

“OPC has an approximate incidence of 115,000 cases per year worldwide and is one of the fastest-rising cancers in Western countries due to increasing HPV-related incidence, especially in younger patients. It is paramount that surveillance methods are developed to improve early detection and outcomes,” explained co-lead investigator Tony Jun Huang, PhD, Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA.

“Considering these factors, the successful detection of HPV from salivary exosomes isolated by our acoustofluidic platform offers distinct advantages, including early detection, risk assessment, and screening,” added Dr. Huang. This technique may also help physicians predict which patients will respond well to radiation therapy or achieve longer progression-free survival.

Exosomes are tiny microvesicles originating within cells that are secreted into body fluids. They are believed to play a role in intercellular communication and their numbers are elevated in association with several types of cancers. Acoustofluidics is an advanced technology that fuses acoustics and microfluidics. Fluid samples are analyzed using a tiny acoustofluidic chip developed to isolate salivary exosomes by removing unwanted particles based on size, leaving exosome-rich concentrated samples that make it easier to detect tumor-specific biomarkers.

Acoustofluidic exosome isolation chip
Acoustofluidic exosome isolation chip for salivary exosome isolation. The microfluidic channels are shown by red dye, and the coin demonstrates the size of the chip. Two pairs of gold interdigital transducers are deposited along the channel, which separates particles according to size.

In this study investigators analyzed saliva samples from 10 patients diagnosed with HPV-OPC using traditional methods. They found that the technique identified the tumor biomarker HPV-16 DNA in 80 percent of the cases when coupled with droplet digital PCR. Since this method is independent of sample variability arising from changes in saliva viscosity and collection method, it may prove ideal for use in clinical settings.

Dr. Huang highlighted some of the technique’s features, including automated and fast exosome isolation (less than five minutes of processing time compared to approximately eight hours of processing time using benchmark technologies). Analyses can be performed at relatively low cost and at points of care. Also, it is suitable for repeated and continuous monitoring of tumor progression and treatment, unlike traditional biopsy.

“With these features, the acoustofluidic technology has the potential to significantly exceed current industry standards, address unmet needs in the field, help expedite exosome-related biomedical research, and aid in the discovery of new exosomal biomarkers,” commented Dr. Huang.

“The saliva exosome liquid biopsy is an effective early detection and risk assessment approach for OPC,” said co-lead investigator David T.W. Wong, DMD, DMSc, of the Center for Oral/Head and Neck Oncology Research, School of Dentistry at the University of California Los Angeles, CA, USA. “The acoustofluidic separation technique provides a fast, biocompatible, high-yield, high-purity, label-free method for exosome isolation from saliva.” According to the researchers, this technology can also be used to analyze other biofluids such as blood, urine, and plasma.

The study was an international collaboration between Duke University, UCLA, and University of Birmingham (UK). According to Prof Hisham Mehanna, Director of the Institute of Head and Neck Studies and Education, University of Birmingham, Birmingham, UK, “The results are a testament to the power of interdisciplinary research and international collaboration.”

Reference
Wang Z et al. Acoustofluidic salivary exosome isolation: A liquid biopsy compatible approach for human papillomavirus—associated oropharyngeal cancer detection. Journal of Molecular Diagnostics v22, January 2020. doi: 10.1016/j.jmoldx.2019.08.004.

This work was supported by the National Institutes of Health (D.T.W.W.: UG3/UH3 TR002978, UH3 TR000923, U01 CA233370, UH2 CA206126), (T.J.H.: R01GM132603, R01 HD086325), (D.TW.W. and F.L.: R21 CA239052) and Canadian Institute of Health (CIHR) Doctoral Foreign Student Award (J.C.), Tobacco Related Disease Research Program (TRDRP) Predoctoral Fellowship (J.C.). Funding was also provided by the Queen Elizabeth Hospital Birmingham (QEHB) Charity UK and the Get-A-Head charity UK.

Malignant gliomas are highly aggressive brain tumors. Surgical removal and chemoradiation of the tumor are the standard of care. Recently, the U.S. Food and Drug Administration (FDA) approved a compound called 5-aminolevulinic acid (5-ALA) as an imaging agent to aid in differentiating tumor from normal tissue during surgery. 5-ALA is a precursor in the heme biosynthesis pathway, which is inefficient in glioma cells because their strongly rewired metabolism does not rely on heme. When patients with malignant glioma ingest 5-ALA prior to surgery, the glioma cells fluoresce pink under a blue light due to their preferential uptake and conversion of 5-ALA to the final precursor in heme biosynthesis, the fluorescent molecule protoporphyrin IX (PpIX). We sought to investigate whether extracellular vesicles (EVs) released from PpIX-enriched glioma cells would fluoresce and be detectable in the blood of these patients.

We employed Amnis® Imaging Flow, which combines flow cytometry and microscopy to detect PpIX-positive EVs. We first determined the optimal 5-ALA dose to maximize fluorescence and minimize cell death. We used a combination of beads of different size (100-500nm) and liposomes with different emission spectra to ensure that the signal emitted in Channel 11 (~640nm) of the Amnis® output was indeed from PpIX, and that all other channels reported no signal. Controls also included lysis with Triton-X of liposomes and EVs.

Importantly, we showed that glioma cells released a significantly higher number of PpIX-positive EVs (247-fold increase) than normal endothelial cells (6-fold increase) after 5-ALA ingestion. We also used xenograft mouse models to show that the presence of PpIX-positive EVs in circulating plasma after 5-ALA ingestion correlated strongly with the presence of a primary brain tumor, while the signal from the plasma of normal control mice remained below background both before and after 5-ALA ingestion.

Finally, we tested the optimized assay in the plasma of patients with gliomas undergoing 5-ALA fluorescence guided surgery at the Massachusetts General Hospital. Samples were collected prior to 5-ALA intake as well as at the time of surgery, prior to tumor removal. Pre- and post-5-ALA plasma samples were kept in the dark to avoid bleaching of the PpIX signal, as were the patients for 24 hours post 5-ALA. We collected samples from 4 patients whose tumors were avidly fluorescent during surgery and 2 patients whose tumors showed minimal fluorescence. Interestingly, we detected PpIX-positive EVs only in the plasma samples from patients whose tumors were avidly fluorescent. Finally, when we compared the fold increase (pre/post-5-ALA) in PpIX-positive signal to the size of the tumor, we found a clear correlation, suggesting that the detected events are likely coming directly from the tumor. This is the first time intracranially derived EVs have been quantified in circulating plasma, and this development opens the door for many exciting studies that can shed light on brain-derived EV dynamics and half-life. For example, we detected between 3,000 and 8,000 PpIX-positive events per mL of plasma. Assuming each 1 mL of plasma contains roughly 1010 EV/mL, we can deduct that only 0.00008% of EVs in blood are of glioma tumor origin. Furthermore, this assay allows us to study EV dynamics in tumor patients undergoing therapy as well as determine the effects of medications such as dexamethasone on the release of EVs into the bloodstream.

Clinically, there is a major need for minimally invasive diagnosis of brain cancer, and characterizing circulating tumor-specific fluorescent EVs provides a window into the primary tumor’s presence and status. Detecting and characterizing fluorescent EVs after administering 5-ALA allows for diagnosis and potentially monitoring of malignant gliomas over time.

Reference

Jones PS, et al. Characterization of plasma-derived protoporphyrin-IX-positive extracellular vesicles following 5-ALA use in patients with malignant glioma. (2019) eBioMedicine 48:23-35. doi: 10.1016/j.ebiom.2019.09.025. PMID: 31628025.