September 2021 ERCC webinar by Juan Pablo Tosar

September's ERCC webinar was from Juan Pablo Tosar.
Video available here.

The National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) has announced a new funding opportunity for characterization of islet-derived extracellular vesicles (EVs) for improved detection, monitoring, classification, and treatment of Type 1 Diabetes (T1D).

This initiative will support the development of tools and experimental platforms for the purification and characterization of EVs originating from the human pancreatic islet and its broader tissue environment in healthy individuals, and individuals with T1D or at-risk of developing the disease. It will also support the exploration of the contribution of pancreatic EV biology to islet function, dysfunction and T1D disease initiation; the development of EV-based diagnostic tools for disease monitoring and classification; and the use of pancreatic EV biology to identify novel therapeutic targets.

A letter of intent to apply for the grant must be sent by October 3, 2021.

For more information, see https://grants.nih.gov/grants/guide/rfa-files/rfa-dk-21-016.html.

This blog originated as a press release from the Broad Institute of MIT and Harvard. Thanks to MIT News for allowing us to repost it here.

Made of components found in the human body, the programmable system is a step toward safer, targeted delivery of gene editing and other molecular therapeutics.

Molecular therapies graphicA new system to deliver molecular therapies to cells, called SEND, can be programmed to encapsulate and deliver different RNA cargoes, potentially provoking less of an immune response than other delivery approaches.
Credit: Courtesy of the researchers

Researchers from MIT, the McGovern Institute for Brain Research at MIT, the Howard Hughes Medical Institute, and the Broad Institute of MIT and Harvard have developed a new way to deliver molecular therapies to cells. The system, called SEND, can be programmed to encapsulate and deliver different RNA cargoes. SEND harnesses natural proteins in the body that form virus-like particles and bind RNA, and it may provoke less of an immune response than other delivery approaches.

Continue reading

This blog originated as a press release from the Singopore-MIT Alliance for Research and Technology (SMART). Thanks to them for allowing us to repost it here.

Four times faster than conventional PCR methods, a new approach called RADICA is highly specific, sensitive, and resistant to inhibitors.

● RApid DIgital Crispr Approach (RADICA) is a molecular rapid testing methodology that allows absolute quantification of viral nucleic acids in 40-60 minutes.

● RADICA is four times faster and significantly less expensive than conventional polymerase chain reaction (PCR) methods as it does not require costly equipment for precise temperature control and cycling.

● The method has been tested on SARS-CoV-2 synthetic DNA and RNA, Epstein–Barr virus in human B cells and serum, and can be easily adapted to detect other kinds of viruses.


Researchers from Critical Analytics for Manufacturing Personalized-Medicine (CAMP), an Interdisciplinary Research Group (IRG) at the Singapore-MIT Alliance for Research and Technology (SMART), MIT’s research enterprise in Singapore, have developed a new method for rapid and accurate detection of viral nucleic acids – a breakthrough that can be easily adapted to detect different DNA/RNA targets in viruses like the coronavirus.

Continue reading

Keep up with developments in the field of exRNA research!

Sign up for periodic updates from the ERCC, including announcements about our monthly webinar series.