Unlocking the
Mysteries of
Extracellular RNA

Once thought to exist only inside cells, RNA is
known to travel outside of cells and play a role in newly
discovered mechanisms of cell-to-cell communication.

The study of RNAs that do not produce proteins, so-called noncoding RNAs, has been an active area of research for many years. Recently, new kinds of non-coding RNAs have been described that have poorly defined activities. Circular RNA (circRNAs) are one of these more enigmatic biomolecules. They are formed when the 5′ head and 3′ tail of a messenger RNA precursor are spliced together. Next-generation sequencing studies have recently shown that circRNAs are abundant and widely expressed in mammals. While other non-coding RNAs have been shown to play critical roles in cancer, the association between circRNAs and cancer is largely unknown. In addition, the degree to which circRNAs are secreted outside the cell has not been well explored.

To study the presence and regulated release of circRNAs during colorectal cancer (CRC) progression, we used three related colon cancer cell lines that differ only in the mutation status of KRAS, an enzyme that acts at the beginning of a wide array of cellular signaling pathways. The parental cell line (DLD-1) contains both wild-type and G13D mutant KRAS alleles, whereas the derivative cell lines contain only a mutant KRAS (DKO-1) or wild-type KRAS (DKs-8) allele (Shirasawa et al. 1993). The G13D mutation locks KRAS into an active state. KRAS mutations occur in approximately 34–45% of CRCs and have been associated with a wide range of tumor-promoting effects (Vogelstein et al. 1988, Wong and Cunningham 2008). We performed deep RNA-Seq analysis of ribosomal RNA-depleted total RNA libraries to characterize circRNA expression in these cell lines and in the exosomes they release. The results from this study were recently published in the journal Scientific Reports (Dou et al. 2016).

Using a unique pipeline developed by our group, we identified hundreds of high-quality candidate circRNAs in each cell line. Remarkably, circRNAs were significantly down-regulated at a global level in the cell lines with mutant KRAS alleles (DLD-1 and DKO-1) compared to wild type (DKs-8), indicating a widespread effect of mutant KRAS on circRNA abundance (see Figure 1). This finding was confirmed in another pair of cell lines. In all of these cell lines, circRNAs were found associated with secreted exosomes, and circRNAs were more abundant there than in cells. Although circRNAs were down-regulated in cell lines with mutant KRAS alleles, it is difficult to conclude that KRAS directly regulates circRNAs. Nevertheless, our analysis did show that down-regulation of circRNAs in KRAS mutant cells was not caused by their increased export to exosomes.

Figure 1.

Figure 1. The blue highlight shows that expression of most circRNAs is lower in the KRAS-mutant cell lines than in the KRAS wild-type cell line.
FDR = False Discovery Rate; a higher number indicates a more confident prediction of a difference in expression.

There are complex regulatory mechanisms for expression of both circRNA and the host genes from which they derive. Figure 2 shows that lower expression of circRNA in the mutant KRAS vs. wild-type cell lines was not matched by a similar lower expression of host gene mRNA. We found a similar lack of correlation in circRNA and host gene mRNA expression level in all the exosome populations we studied. These results imply that regulation of circRNAs can occur independent of their host genes, and different regulatory processes might direct secretion of circRNA and host gene mRNA.

Figure 2.

Figure 2. The blue highlight shows that while expression of most circRNAs is lower in the KRAS-mutant than in the wild-type cell line, host gene mRNA expression shows no such pattern.

To further delineate how circRNA biogenesis could be affected by mutant KRAS, we also examined the expression levels of the RNA-editing enzyme ADAR and the RNA-binding protein QKI, which have been reported as circRNA regulators (Ivanov et al. 2015, Conn et al. 2015) (see Figure 3). Here we obtained contradictory results. The level of ADAR was decreased in the KRAS mutant cells; reduced ADAR activity could lead to an increase of circRNAs. QKI was also down-regulated in KRAS mutant cells, which could lead to a decrease of circRNAs.

Figure 3. Effect of ADAR and QKI on pre-mRNA circularization

Figure 3. Effect of ADAR and QKI on pre-mRNA circularization

More broadly, we studied the expression levels of all RNA-binding proteins within the RBPDB database (Cook et al. 2011). Six were found to be significantly differentially expressed in KRAS mutant cell lines compared with wild-type KRAS cell lines (ELAVL2, RBMS3, BICC1, MSI1, RBM44, and LARP6). These genes may serve as candidate circRNA regulators. However, our previous work shows that the correlation between mRNA and protein expression level is low for RNA-binding proteins (Zhang et al. 2014), and thus RNA levels for these RNA-binding proteins might not reflect their true protein levels. Further investigation will be needed to precisely define how circRNAs are regulated. Nevertheless, our results show that oncogenic mutations can change circRNA composition in cells and exosomes and suggest that circRNAs may serve as promising cancer biomarkers.


Conn, S.J., et al. The RNA binding protein Quaking regulates formation of circRNAs. Cell (2015) 160: 1125-1134. PMID 25768908.

Cook, K.B., et al. RBPDB: a database of RNA-binding specificities. Nucleic Acids Res (2011) 39: D301-D308. PMID 21036867.

Dou, Y., et al. Circular RNAs are down-regulated in KRAS mutant colon cancer cells and can be transferred to exosomes. Sci Rep (2016) 6: 37982. PMID 27892494.

Ivanov, A., et al. Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals. Cell Rep (2015) 10:170-177. PMID 25558066.

Shirasawa et al. Altered growth of human colon cancer cell lines disrupted at activated Ki-ras. Science (1993) 260:85-88. PMID 8465203.

Vogelstein, B., et al. Genetic alterations during colorectal-tumor development. N Engl J Med (1988) 319:525-532. PMID 2841597.

Wong, R. and Cunningham, D. Using predictive biomarkers to select patients with advanced colorectal cancer for treatment with Epidermal Growth Factor Receptor antibodies. J Clin Oncol (2008) 26:5668-5670. PMID 19001346.

Zhang, B., et al. Proteogenomic characterization of human colon and rectal cancer. Nature (2014) 513:382-387. PMID 25043054.

Alzheimer’s Disease (AD) accounts for a large number of dementia cases resulting in impaired memory, thinking, and behavior. Risk factors for AD include age and family history, but unfortunately there is not yet a definitive way to predict if an individual will develop the disease. There are reference biomarkers that can indicate a higher risk of developing AD, such as APOE genotype. Carriers of the APOE4 allele, present in ~20% of the population, are at increased risk for AD. Cerebrospinal fluid (CSF) is a body fluid found in the brain and spine that cushions and protects the brain from injury. CSF protein biomarkers, such as Aβ42, tau and phospho-tau, are important in screening for brain disease, but these reference markers often lack the sensitivity and specificity necessary for clinical utility.

Extracellular RNA, specifically microRNA (miRNA), has been found in CSF and may serve as a useful resource for improved AD biomarkers. In a recently published study, the Saugstad lab from Oregon Health and Science University examined CSF from a large group of living donors to identify unique miRNA biomarkers enriched in AD patients. In the study, miRNA expression levels from 50 AD and 49 control subjects were assessed using TaqMan Low Density Arrays containing probes for 754 validated miRNAs. Each miRNA was given a “Multitest Score” combining the results of four statistical tests, and miRNAs that passed two or more of the tests were considered for further analyses.

Two statistical tests, log-rank and logistic regression, were used to identify candidates that were twice as likely to be associated with AD status as not. The other tests were two variants of random forest classifier, CART and CHAID, designed to select biomarker candidates able to reliably distinguish AD from non-AD status when grouped with random subsets of other miRNAs. 36 miRNA biomarker candidates were identified by at least two of these analyses. The researchers found that linear combinations of subsets of miRNA, and the addition of ApoE genotyping status, further increased the sensitivity and specificity of AD detection (Figure 1).


Figure 1. CSF miRNA biomarkers and APOE genotype predict AD status better together. AUC - Area Under the Curve; higher AUC indicates higher predictive power.

Figure 1. CSF miRNA biomarkers and APOE genotype predict AD status better together. AUC – Area Under the Curve; higher AUC indicates higher predictive power.

Reprinted with permission from IOS Press.


This study shows the potential use of miRNAs isolated from CSF as AD biomarkers. The stringent statistical analyses and large sample size together provided strength to these initial studies. These 36 candidate biomarkers are currently being tested in further validation studies in CSF from a new group of 120 donors, which will also include APOE genotyping and Aβ42 and tau protein levels. Ultimately, a combination of miRNA CSF biomarkers with existing reference biomarkers (APOE, Aβ42, tau) may provide a specific and sensitive tool for the diagnosis of AD in the clinic.

MicroRNAs in Human Cerebrospinal Fluid as Biomarkers for Alzheimer’s Disease
Lusardi T, Phillips J, Wiedrick, J, Harrington C, Lind B, Lapidus J, Quinn J, Saugstad J. Journal of Alzheimer’s Disease (2017) 55: 1223-1233. doi: 10.3233/JAD-160835

Cancer cells actively reprogram gene expression to promote their ability to produce tumors. One way this reprogramming is carried out is by subverting the main routes of cell-to-cell communication by loading exosomes (vesicles that bud off from cells) with specific miRNAs that either promote or suppress tumors and then releasing them into the tumor microenvironment. In a Cancer Research paper published online recently (Kanlikilicer et al., 2016), we found that miR-6126, a miRNA that was reported to be correlated with better overall survival in high-grade serous ovarian cancer patients, is ubiquitously removed from ovarian cancer cells via exosomes.

miR-6126 is ubiquitously removed from ovarian cancer cells via exosomes

We found that miR-6126 suppresses tumors by directly targeting integrin ß1, a key regulator of cancer cell metastasis. Treatment of orthotopic mouse models of ovarian cancer with miR-6126 reduced tumor growth, proliferating cells, and microvessel density. Our findings provide new insights into the role of exosomes in mediating tumor progression and suggest a new therapeutic approach to disrupt the origin and growth of tumors.

Ubiquitous release of exosomal tumor suppressor miR-6126 from ovarian cancer cells
Pinar Kanlikilicer, Mohammed Saber, Recep Bayraktar, Rahul Mitra, Cristina Ivan, Burcu Aslan, Xinna Zhang, Justyna Filant, Andreia M Silva, Cristian Rodriguez-Aguayo, Emine Bayraktar, Martin Pichler, Bulent Ozpolat, George A Calin, Anil K. Sood and Gabriel Lopez-Berestein*
Cancer Res. October 14, 2016 doi: 10.1158/0008-5472.CAN-16-0714
*Corresponding author