In the Winter 2018 ERCC Newsletter, we review some of what was discussed at the ERCC9 conference last November. A major theme and continuing focus of research is finding the best methods for production of extracellular vesicles for therapeutic applications. We also highlight future directions in exRNA research and provide the schedule of upcoming ERCC web seminars. The next seminar is on Thursday, March 1st, at 2pm ET by Dr. David Wong of UCLA. He will discuss “Salivary exRNA and a New Horizon in Dental, Oral and Craniofacial Biology.” Dr. Wong and the ERCC are hosting symposia on the same topic at the annual meetings of the American and International Assocations for Dental Research, in Ft. Lauderdale, Florida in late March and London in July.

Please join us on the web and then in person!

You can download the newsletter here. Please be in touch at info@exRNA.org if you have an exRNA-related topic you would like us to cover in the Spring newsletter.

Our bodies are made up of trillions of cells that work together to keep us alive. A major challenge in their success is communication between cells in different parts of the body. Our cells have ingenious ways of overcoming this challenge, with exosomes emerging as key players. Exosomes are cell-derived vesicles that can carry cargo in the form of nucleic acids, lipids, or proteins from one cell to another. The sender cell packages cargo into an exosome, which then leaves the cell by being pinched off from the cell membrane. The exosome finds it way to a neighboring cell or into the bloodstream, from which it can be sent throughout the body. The exosome has signs on its surface that determine what cells can receive the cargo, so it only goes to the intended receiver. If a heart cell wants to talk to another heart cell, it puts markers on its exosomes that make them stick to other heart cells. When those exosomes are taken into the receiving cells, their cargo can bring about physiologic changes there.

Extracellular vesicles and their cargo. Source: BioProcess International.

Exosomes play a major role not only in our regular physiology but also in disease. One of the fields in which the role of exosomes is being uncovered is cardiovascular disease. For example, heart endothelial cells (cells that line the blood vessels) communicate with heart muscle cells via exosomes that contain microRNA, a kind of molecule that can decrease how many transcripts of a particular set of genes get made in the target cell. This process may play a role in the heart’s response to plaque formation. One can envision the possibility for engineering exosomes so that we can communicate with our bodies to treat or prevent disease. The lab of Dr. Susmita Sahoo at the Icahn School of Medicine at Mount Sinai is interested in doing just that.

Before talking about how Dr. Sahoo’s group is using exosomes in treating heart failure, let’s talk about a specific cause of heart failure: epitranscriptomics. You may or may not have heard of epigenetics, which is the study of heritable, chemical changes to DNA that do not change the sequence of the DNA. Epitranscriptomics is based on the exact same idea, but the change happens at the RNA level. One such epitranscriptomic modification is the addition or removal of methyl groups on adenosines within certain mRNAs in cells.

Structure of N6-Methyladenosine (m6A)

Heart muscle cells (cardiomyocytes) usually use electrical signals to interact and pulse in unison with a set rhythm. Work from Dr. Sahoo’s team suggests that decreasing levels of FTO, an enzyme that removes these methyl groups from RNA, leads to arrhythmia, a disturbance in that synchronized pulse. This finding is corroborated by the fact that failing hearts have low levels of FTO and elevated levels of mRNA methylation. Delivering exosomes with extra FTO to these cells might help them maintain healthy levels of FTO and decrease the chance of heart failure; this approach holds tremendous promise for the treatment of heart disease.

Dr. Sahoo’s research on exosomes is not limited to the failing heart. Recent work from her group suggests that a specific type of exosome, known to carry a marker called CD34 on its surface, improves angiogenesis, or formation of new blood vessels. Angiogenesis is a crucial step in healing after an injury. Dr. Sahoo’s group has shown that exosomes are able to improve healing in mice by providing microRNAs important for angiogenesis to cells near the site of injury. This work is not only important in helping patients after an injury, but it also teaches us about fundamental roles of microRNAs in angiogenesis and gene regulation.

We have outlined only some of the work going on in Dr. Sahoo’s lab. You can visit her website or watch her recent ERCC seminar to learn more about exosomes and her research on their role in cardiac medicine.

Therapeutic exosomes and Huntington’s disease
Extracellular vesicles, specifically exosomes, are currently being explored as therapeutic delivery systems for disease-targeting RNA molecules. In a talk at the ERCC9 conference, Reka A. Haraszti, M.D., a researcher in Dr. Anastasia Khvorova’s group at the University of Massachusetts Medical School, described how exosomes could be used to treat Huntington’s disease, a progressive neurodegenerative disorder. There are currently no effective therapies for this illness, which is caused by a mutation in the Huntingtin gene. Exosomes capable of transporting molecular payloads designed to silence the defective Huntingtin gene represent a potential therapy for this fatal disease.

Comparison of exosome production methods
Technical challenges in the large-scale production of exosomes currently limit their utility for disease treatment. To address this issue, Dr. Haraszti and Dr. Khvorova’s group teamed up with MassBiologics to develop and compare two different exosome production methods for yield and therapeutic efficacy of the exosomes. They utilized Tangential Flow Filtration (TFF) and ultracentrifugation to isolate exosomes from the conditioned media of cultured mesenchymal stem cells.

In TFF, conditioned media is continuously swept along the surface of a filter while a downward pressure is applied to force molecules through the filter. This process is like shaking a sifter to concentrate large particles blocking the holes in the filter, allowing smaller particles to pass through. In contrast, ultracentrifugation works by placing the conditioned media in a column of viscous fluid and spinning rapidly to separate extracellular vesicles in the media by their differing densities.

The researchers found that isolation by TFF resulted in 10-100 times more exosomes than ultracentrifugation. TFF-generated exosomes were also more heterogenous and contained 10 times more protein.

Exosomes produced by TFF and ultracentrifugation were also studied for their therapeutic potential in Huntington’s disease. After purification, exosomes were loaded with small interfering RNA (siRNA) molecules that could silence the expression of the mutant Huntingtin gene in target cells that take up the exosomes.

In cell cultures of primary neurons, TFF-generated exosomes showed greater inhibition of Huntingtin expression than those generated by ultracentrifugation. Moreover, TFF-generated exosomes infused into the brains of mice suppressed Huntingtin gene expression in vivo.

Future for therapies using exosomes isolated by Tangential Flow Filtration
The findings of Dr. Haraszti’s group indicate that Tangential Flow Filtration can generate a higher yield of exosomes for clinical use than older methods. Further, TFF-generated exosomes were effective gene therapy agents in experimental models of Huntington’s disease, and hold promise as delivery systems for clinical treatments.
 
 
Related Mini-conference

There is an upcoming mini-conference on EV manufacturing and isolation, a topic closely related to the research described here. The in-person conference is in Gainesville, Florida, but a webcast will also be available for those who want to participate remotely.
 
 
References
1. Haraszti RA, et al. Loading of extracellular vesicles with chemically stabilized hydrophobic siRNAs for the treatment of disease in the central nervous system. Bio-protocol (2017) 7: e2338. doi: 10.21769/BioProtoc.2338
2. Schwartz L., and Seeley K. Introduction to tangential flow filtration for laboratory and process development applications. Retrieved from https://laboratory.pall.com/content/dam/pall/laboratory/literature-library/non-gated/id-34212.pdf
3. Sunkara V, Woo HK, and Cho YK. Emerging techniques in the isolation and characterization of extracellular vesicles and their roles in cancer diagnostics and prognostics. Analyst (2016) 141: 371-81. doi: 10.1039/c5an01775k
4. Synder Filtration. “Characterization of polymeric, porous membranes: UF/MF & solute rejection measurements.” Retrieved from http://synderfiltration.com/learning-center/articles/membranes/characterization-of-polymeric-porous-membranes/

A recent study by Wei et al., 2017 catalogs the composition and characteristics of extracellular RNA (exRNA) secreted via three different routes from parent cells. The work provides novel insights into the biology of exRNA transport and intercellular communication, as well as the clinical potential of exRNA as a biomarker of disease.

The senior investigator of the study, Anna Krichevsky, Ph.D., at Brigham and Women’s Hospital and Harvard Medical School described the rationale for the study: “To understand the functions of exRNA complexes, we first have to define the exRNA repertoire with minimal bias.”

The exRNA Composition of Microvesicles, Exosomes, and Ribonucleoproteins (RNPs)
Dr. Krichevsky’s group sequenced RNA in microvesicles, exosomes, and extravesicular ribonucleoproteins (RNPs) isolated from glioma stem cells. They found that the majority of exRNA in all three fractions is noncoding. Although most exRNA studies focus on one class of noncoding RNA called microRNA (miRNA; 21-25 nucleotide molecules that repress gene expression), they reported that <10% of exRNA secreted by glioma stem cells is miRNA.

Comparing the profile of exRNA isolated from RNPs and extracellular vesicles (EVs) — including both exosomes and microvesicles, they found that RNPs contain higher amounts of noncoding cytoplasmic Y RNA and transfer RNA (tRNA) fragments.

Y RNA folds into a characteristic stem-loop structure and was originally found in protein-RNA complexes of individuals with autoimmune diseases. According to Dr. Krichevsky, “Despite abundant expression in all vertebrate cells, the physiological functions of Y RNA are only beginning to emerge.” Some evidence suggests that Y RNA plays a role in DNA replication and RNA quality control. Y RNA fragments may also be involved in cell death, ribosomal RNA maintenance, and histone gene expression.

tRNA is well known as a mediator of the translation of mRNA to protein. However, recent studies suggest that tRNA fragments found in exRNA are involved in regulating gene expression during cellular stress responses. Dr. Krichevsky discussed the implications of extracellular tRNA on cellular communication: “Based on the exRNA levels and biological functions of tRNA, we hypothesize that transferred tRNA transcripts can have a major impact on recipient cells.”

Along with noncoding RNA, a small proportion of gene-encoding messenger RNA (mRNA) was detected in extracellular vesicles and RNPs. Previous studies have also found extracellular mRNA; however, they did not determine if the mRNA transcripts were intact or fragmented. Dr. Krichevsky’s group was the first to show that short (<1000 nucleotides), endogenous full-length mRNAs can be packaged into exosomes, and microvesicles contain even longer mRNAs. Fragments of long mRNA transcripts were also present in exRNA.

Using exRNA as a Biomarker
Researchers are currently exploring the use of exRNAs as potential biomarkers for the diagnosis and monitoring of diseases. However, many exRNA biomarker studies have been limited in scope because they examined a heterogeneous pool of exRNA purified from an unfractionated collection of EV types.

By fractionating conditioned media from glioma stem cells into microvesicle, exosome, and RNP fractions, Dr. Krichevsky’s group was able to compare their RNA profiles with those of the parent cells. They found that the RNA content of microvesicles most closely resembled that of the parent cells, making this type of exRNA carrier a good candidate for disease biomarkers.

Dr. Krichevsky said, “We believe there is more intact mRNA in microvesicles, which we can consider for biomarkers. We can think about genes that are mutated. On the other hand, miRNAs are more enriched in the exosomes. It would be great if we could detect cancer mutations and non-coding RNA biomarkers in biofluids; then we would not need to do a biopsy.”

Conclusions
By developing novel experimental approaches to illustrate that exRNA composition differs by exRNA carrier, Krichevsky’s group has made significant contributions to exRNA research. Moreover, they highlighted that exRNA contains more than the well-studied miRNAs, including full-length mRNA molecules, Y RNA, and tRNA. Their data also indicate that the RNA profile of microvesicles is most similar to that of the cell of origin, including the presence of full-length mRNAs, making microvesicle exRNA a good candidate for some disease biomarkers.

In an interview, Dr. Krichevsky discussed the importance of this study: “Our work changed the way people thought about exRNA by showing them the exRNA in numbers, which helps appreciate their heterogeneity and the overall impact. The field is shifting from focusing on a specific extracellular miRNA to now considering that there are thousands of different RNAs present in extracellular complexes.”

References
Wei, Z. et al. Coding and noncoding landscape of extracellular RNA released by human glioma stem cells. Nature Communications (2017) 8:1145. doi:10.1038/s41467-017-01196-x

(This blog first appeared as a press release from Ohio State University.)

Principal investigator Peixuan Guo, PhD, Sylvan G. Frank Endowed Chair professor of the OSU College of Pharmacy and a member of the OSUCCC – James Translational Therapeutics Program.

  • Therapies based on RNA, such as small interfering RNA, hold great promise for cancer treatment but delivering these agents to their targets in cancer cells has been a problem.
  • A new study shows that attaching antibody-like RNA nanoparticles to microvesicles can deliver effective RNA therapeutics specifically to cancer cells.
  • The researchers are now working to adapt the technology for use in the clinic.

Columbus, Ohio – A new study shows that attaching antibody-like RNA nanoparticles to microvesicles can deliver effective RNA therapeutics such as small interfering RNA (siRNA) specifically to cancer cells. Researchers used RNA nanotechnology to apply the RNA nanoparticles and control their orientation to produce microscopic, therapy-loaded extracellular vesicles that successfully targeted three types of cancer in animal models.

The findings, reported in the journal Nature Nanotechnology, could lead to a new generation of anticancer drugs that use siRNA, microRNA and other RNA-interference technologies.

The study was led by researchers at Ohio State’s College of Pharmacy; the Ohio State University Comprehensive Cancer Center – James Cancer Hospital and Solove Research Institute (OSUCCC – James).

“Therapies that use siRNA and RNA interference technologies are poised to transform cancer therapy,” says the principal investigator Peixuan Guo, PhD, Sylvan G. Frank Endowed Chair professor of the College of Pharmacy and a member of the OSUCCC – James Translational Therapeutics Program. “But clinical trials evaluating these agents have failed one after another due to the inability to deliver the agents directly to cancer cells in the human body.”

Guo noted that even when agents did reach and enter cancer cells, they were trapped in internal vesicles called endosomes and rendered ineffective.

“Our findings solve two major problems that impede these promising anticancer treatments: targeted delivery of the vesicles to tumor cells and freeing the therapeutic from the endosome traps after it is taken up by cancer cells. In this study, cancers stopped growing after systemic injection of these particles into animal models with tumors derived from human patients.” Guo says. “We’re working now to translate this technology into clinical applications.”

Guo and his colleagues produced extracellular microvesicles (exosomes) that display antibody-like RNA molecules called aptamers that bind with a surface marker that is overexpressed by each of three tumor types:

  • To inhibit prostate cancer, vesicles were designed to bind to prostate-specific membrane antigen (PSMA);
  • To inhibit breast cancer, vesicles were designed to bind to epidermal growth factor receptor (EGFR);
  • To inhibit a colorectal cancer graft of human origin, vesicles were designed to bind to folate receptors.

All vesicles were loaded with a small interfering RNA for down-regulating the survivin gene as a test therapy. The survivin gene inhibits apoptosis and is overexpressed in many cancer types.

Key findings include:

  • Vesicles targeting the prostate-specific membrane antigen completely inhibited prostate-cancer growth in an animal model with no observed toxicity.
  • Vesicles targeting EGFR inhibited breast cancer growth in an animal model.
  • Vesicles targeting folate receptors significantly suppressed tumor growth of human patient-derived colorectal cancer in an animal model.

“Overall, our study suggests that RNA nanotechnology can be used to program natural extracellular vesicles for delivery of interfering RNAs specifically to cancer cells,” Guo says.

Funding from the National Institutes of Health/National Cancer Institute (grants TR000875 and CA207946, CA186100, CA197706, CA177558 and CA195573) supported this research.

Other researchers involved in this study were Fengmei Pi, Daniel W. Binzel, Zhefeng Li, Hui Li, Farzin Haque, Shaoying Wang and Carlo M. Croce, The Ohio State University Wexner Medical Center; Meiyan Sun and Bin Guo, University of Houston; Piotr Rychahou and B. Mark Evers, University of Kentucky; and Tae Jin Lee, now at University of Texas.

About the OSUCCC – James
The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute strives to create a cancer-free world by integrating scientific research with excellence in education and patient-centered care, a strategy that leads to better methods of prevention, detection and treatment. Ohio State is one of only 49 National Cancer Institute (NCI)-designated Comprehensive Cancer Centers and one of only a few centers funded by the NCI to conduct both phase I and phase II clinical trials on novel anticancer drugs sponsored by the NCI. As the cancer program’s 308-bed adult patient-care component, The James is one of the top cancer hospitals in the nation as ranked by U.S. News & World Report and has achieved Magnet designation, the highest honor an organization can receive for quality patient care and professional nursing practice. At 21 floors with more than 1.1 million square feet, The James is a transformational facility that fosters collaboration and integration of cancer research and clinical cancer care.

Quantitative measurements of the number, size, and cargo of extracellular vesicles (EVs) are essential to both basic research on how EVs are produced and function, and to application of this knowledge to the development of EV-based biomarkers and therapeutics. Flow cytometry is a popular method for analyzing EVs, but their small size and dim signals have made this a challenge using the conventional flow cytometry approaches developed for analysis of cells (1). Moreover, established flow cytometry calibrators, standards, and experimental design considerations for cell studies are not regularly used in EV studies. As a result, there is significant variation in instrument set up, sample preparation, and data reporting for flow cytometric measurements of EVs. These issues are increasingly appreciated (1-5), but much needs to be done to develop consensus on best practices. To address these issues, members of the International Society for Extracellular Vesicles (ISEV), the International Society for Advancement of Cytometry (ISAC), and the International Society on Thrombosis and Hemostasis (ISTH) are participating in a tri-Society Working Group, which includes several ERCC members, to improve the reporting of methods and results for FC-based EV measurements.

Reporting of EV Measurement Methods

A flow cytometer is an instrument, not a method. An EV analysis method that uses a flow cytometer involves many instrument setup, sample preparation, and data analysis decisions, including: 1) what signal to use for EV detection (light scatter or fluorescence); 2) how to resolve single EVs from the simultaneous occurrence of many EVs in the laser at the same time (aka coincidence or “swarm”); 3) how to gate the data to focus on EVs versus background events (without introducing artifacts or mis-representing the data); 4) how to estimate the size of the particles detected; 5) how to estimate the brightness of the particles detected; 6) how to verify that the particles detected are EVs and not other particles present in the sample, to name just some of the many decisions involved.

Several years ago, ISAC developed and introduced the Minimum Information about a Flow Cytometry Experiment (MIFlowCyt) (6), a set of guidelines to promote the sharing, reproducibility, and proper interpretation of flow cytometry data. These guidelines were developed with cell analysis, and particularly high parameter immunophenotyping, in mind, but they also apply to multiparameter EV analysis. However, there are several additional details about an EV measurement that are essential to include. The ISEV-ISAC-ISTH EV FC Working Group has been conducting a series of standardization studies to develop a consensus on the essential elements of an FC-based EV measurement that should be reported. These studies will be reported, along with the consensus reporting guidelines, in a paper planned for the coming year.

Standards and Calibrators for EV Analysis

Standards and calibration are essential components of any analytical method. These standards, and their use, are well established for flow cytometry and include 1) counting beads that can be used to calibrate sample flow rates for reporting of absolute particle concentrations, 2) fluorescence intensity standards that enable particle brightness to be expressed in NIST-traceable absolute units of mean equivalent soluble fluorochromes (MESF) (7) or equivalent reference fluorochromes (ERF) (8); 3) antibody-capture standards that can be used to estimate antibody binding in immunofluorescence measurements; and 4) NIST-traceable particle size standards.

Most of these standards and calibrators, and their methods of use, can be applied to EV measurements, with some caveats and cautions. Particle size standards, in particular, are often mis-used in FC-based EV measurements due to a lack of understanding of the effect on light scatter of refractive index (RI), which is different for polystyrene, silica, and lipids. With care, however, these differences can be used in conjunction with Mie scattering theory to enable estimates of EV size based on FC light scatter measurements. Commercially available fluorescence intensity and antibody-capture standards are generally designed for cell measurements, and tend to be brighter than EVs, but still have value for facilitating comparison of measurements between labs or instruments. EV-scaled intensity and antibody-binding standards will be a useful addition to the EV analysis toolbox, and are in development by several groups and companies.

A major unmet need is for EV standards, which will have use not only in FC-based EV measurements, but across the EV field. This is a challenging prospect, as an ideal EV standard will reflect not only the size and number of EVs, but also cargo, including surface molecules (for immunophenotyping) and intra-vesicular cargo, including nucleic acids, soluble proteins, and small molecules. Moreover, EVs are themselves quite diverse, raising the question of what type of EV, if any, might represent a universal standard. EV preparations for various cultured cell lines are commercially available from a number of sources but, in general, these have not been subjected to rigorous, independent characterization of these essential features or their uniformity, stability, or reproducibility. Such characterization is essential for validation of any putative standard and may be the subject of future activities by the ISEV-ISAC-ISTH EV FC Working Group.

Conclusions and Prospects

As EV research expands to impact every area of biology, issues with rigor and reproducibility are front and center. Translating observations made in the basic research lab into mechanistic understanding of EV actions and clinically actionable knowledge requires robust and validated analytical methods. Careful attention to the description of methods, standardization and calibration of analytical instrument and methods, and reporting of results are essential. Community efforts by the ERCC and relevant international societies will be key to helping researchers maximize the value of their work to the broader community.

In future blog posts we will discuss the controversial issue of whether to use light scatter or fluorescence to detect EVs, as well as new EV detection methods we’ve developed using fluorogenic membrane probes.

References

1. Nolan JP. Flow cytometry of extracellular vesicles: potential, pitfalls, and prospects. Curr. Protoc. Cytom. (2015) 73:13.14.1-13.14.16. PMID: 26132176. doi: 10.1002/0471142956.cy1314s73.
2. Chandler WL. Measurement of microvesicle levels in human blood using flow cytometry. Cytometry B Clin. Cytom. (2016) 90:326-336. PMID: 26606416. doi: 10.1002/cyto.b.21343.
3. Coumans FA, et al. Methodological guidelines to study extracellular vesicles. Circ. Res. (2017) 120:1632-1648. PMID: 28495994. doi: 10.1161/CIRCRESAHA.117.309417.
4. Nolan JP, Duggan E. Analysis of individual extracellular vesicles by flow cytometry. Methods Mol. Biol. (2018) 1678:79-92. PMID: 29071676. doi: 10.1007/978-1-4939-7346-0_5.
5. Nolan JP, Jones JC. Detection of platelet vesicles by flow cytometry. Platelets (2017) 28:256-262. PMID: 28277059. doi: 10.1080/09537104.2017.1280602.
6. Lee JA, et al. MIFlowCyt: the minimum information about a flow cytometry experiment. Cytometry A. (2008) 73:926-930. PMID: 18752282 doi: 10.1002/cyto.a.20623.
7. Wang L, Gaigalas AK, Abbasi F, Marti GE, Vogt RF, Schwartz A. Quantitating fluorescence intensity from fluorophores: practical use of MESF values. J. Res. Natl. Inst. Stand. Technol. (2002) 107:339-354. PMID: 27446735. doi: 10.6028/jres.107.027.
8. Wang L, Gaigalas AK. Development of multicolor flow cytometry calibration standards: Assignment of equivalent reference fluorophores (ERF) unit. J. Res. Natl. Inst. Stand. Technol. (2011) 116:671-83. PMID: 26989591. doi: 10.6028/jres.116.012.


Scientists from the ERCC have joined forces to create a CSF Consortium to pool resources and establish standard practices in the study of cerebrospinal fluid (CSF).

One of the goals of the ERCC is not only to understand the fundamental biology of extracellular RNA (exRNA), but to develop exRNA-based biomarkers of disease. When such biomarkers have been found, studied, and cleared for clinical use, liquid biopsy of blood and other biofluids can enable earlier disease detection and less invasive tracking of disease progression. For neurological disorders, drawing CSF from the spinal cord has clear benefits over a more invasive brain biopsy. Progress in our technical understanding of how to accurately assess biomarkers in CSF will increase our basic understanding and promote clinical advancements in the diagnosis and treatment of neurological disease. Unfortunately, there are many inconsistencies between the processing of CSF in current studies. Data replication is often difficult, in large part due to variability across laboratories and institutions in protocols for sample isolation, purification, and analysis. Thus, the CSF Consortium, spearheaded by Dr. Fred Hochberg (https://fredhhochbergmd.com), was designed to be a resource for researchers to help minimize these discrepancies.

The CSF consortium plan calls for CSF researchers and clinicians to work together to improve standard practices. A major focus is transparency through open sharing of their work. Researchers are encouraged to establish collaborations, share in-depth details of experimental designs and reagents (including batch/lot numbers), and release any details of in-house protocol modifications. Working with the same biosamples shared through the Virtual Biorepository (VBR) enables multiple labs to compare and synchronize their protocols with one source of variability removed. The expectation is that sharing of detailed information will enable future researchers to avoid common pitfalls and plan their own experiments appropriately. Ultimately, the goal is to have open-access information available from each stage of every project: from biofluid, RNA, and extracellular vesicle (EV) collection, isolation, and storage to downstream analyses such as RT-qPCR and RNA sequencing.

If you are a CSF researcher, please contact us so that we can work with you as well!

Highlights of recent CSF Consortium efforts
Saugstad et al. (2017) recently demonstrated the strength of the CSF consortium. In a collaboration between three institutions (UC San Diego, Oregon Health & Science University, and the Translational Genomics Research Institute), researchers worked together to characterize the EV and RNA composition of identical pools of CSF at each institute from patients with five different neurological disorders. This work in parallel allowed the groups to identify potential sources of variability in protocols including sample preparation, RNA isolation, and quantification of RNA via RNA sequencing and RT-qPCR. The study identified changes in EVs and RNA in the disease CSF samples and detected an enrichment of microRNAs and mRNAs related to disease in both EV and total RNA. The paper highlights the importance of stringent standard operating procedures, including the use of common standard sample collection and data analysis protocols across institutions.

In other work, Figueroa et al., 2017 performed a multi-institutional study of RNA extracted from CSF-derived EVs of patients with glioblastoma (GBM), a very aggressive form of brain cancer. (See this related blog on glioblastoma.) A key diagnostic biomarker in classical GBM is the functional status of the Epidermal Growth Factor Receptor (EGFR). This cell-surface receptor is the starting point of a series of signaling pathways related to cell growth. When its expression surges or it folds incorrectly, the result is cells with hyper-active signaling that never stop growing. This study involved the development of a liquid biopsy that scans RNA extracted from CSF EVs for tumor-associated amplifications and mutations in EGFR. The test has very high specificity and fair sensitivity: it almost never incorrectly flags a healthy patient as having GBM and correctly identifies almost two thirds of GBM sufferers. The clinical standard for diagnosis of GBM is magnetic resonance imaging (MRI), which correctly classifies most brain tumors, but in too many cases incorrectly suggests that healthy brain tissue might be cancerous. The complementarity of highly sensitive MRI and highly specific RNA liquid biopsy argues that updating the standard of care to include collection of CSF and brain images at the same time would better separate healthy from diseased brain tissue.

The CSF Consortium is casting its nets wider in its fight against glioblastoma, looking at molecules beyond EGFR in the attempt to develop an RNA-based diagnosis tool for GBM. Akers et al., 2017 developed a diagnostic panel of 9 miRNA biomarkers by analyzing the EV RNA from 135 CSF samples in 3 cohorts, followed by validation of the miRNA panel in 60 CSF samples from 2 cohorts. The researchers found that even with that fairly large sample size, the miRNA profiles in lumbar and cisternal CSF — fluid collected from the spine or the base of the neck, respectively — are significantly different, which is problematic, since cisternal CSF is much more difficult to collect. On the other hand, they also found that RNAs extracted from raw CSF had a similar profile and diagnostic power as RNAs extracted from vesicles after an initial EV purification step, which might simplify the translation of this biomarker research into the clinic.

References
Akers, J.C. et al. A cerebrospinal fluid microRNA signature as biomarker for glioblastoma. Oncotarget (2017) 8: 68769-68779.
Figueroa, J.M et al. Detection of wtEGFR amplification and EGFRvIII mutation in CSF-derived extracellular vesicles of glioblastoma patients. Neuro. Oncol. (2017) Advance online publication. doi: 10.1093/neuonc/nox085
Saugstad, J.A. et al. Analysis of extracellular RNA in cerebrospinal fluid. J. Extracellular Vesicles (2017) 6: 1317577.

We are pleased to announce the publication of miRandola 2017 in Nucleic Acids Research, Database issue 2018!
Citation:
miRandola 2017: a curated knowledge base of non-invasive biomarkers.
Francesco Russo*, Sebastiano Di Bella, Federica Vannini, Gabriele Berti, Flavia Scoyni, Helen V. Cook, Alberto Santos, Giovanni Nigita, Vincenzo Bonnici, Alessandro Laganà, Filippo Geraci, Alfredo Pulvirenti, Rosalba Giugno, Federico De Masi, Kirstine Belling, Lars J. Jensen, Søren Brunak, Marco Pellegrini, Alfredo Ferro.

*Correspondence to francesco.russo@cpr.ku.dk
URL: Nucleic Acids Research
Website: http://mirandola.iit.cnr.it/

The Extracellular RNA Communication Consortium (ERCC) has developed a Virtual Biorepository (VBR) to facilitate the sharing of biological materials between researchers. As of September 1, 2017, the VBR hub is now available for use by the global extracellular RNA research community (both ERCC and non-ERCC members) at https://genboree.org/vbr-hub. This Phase 1 (beta) release currently provides access to metadata on more than 10,000 biosamples. Specifically, there are 7,651 cerebrospinal fluid (CSF) and 2,356 hepatobiliary samples from the Translational Genomics Research Institute, Phoenix Children’s Hospital, Oregon Health and Science University, and the University of California, San Diego. Another 50,000 hepatobiliary samples from the Mayo Clinic are planned to be available before the end of 2017. Most participant institutions have agreed to a common framework for biosample exchange, including common Institutional Review Board (IRB) protocols and Material Transfer Agreements (MTA).

The Virtual Biorepository originally arose from the needs of investigators within the ERC consortium to share biofluid samples across institutions for the purpose of collaborative protocol development and biomarker discovery. To enable efficient sample sharing, the ERCC Resource Sharing Working Group worked with the Data Coordination Center (DCC) and Administrative Core to initiate VBR development. The initial goal was to enable the sharing of cerebrospinal fluid (CSF) samples among members of the ERCC-based CSF consortium. The types of shared resources available in the VBR have since extended to include hepatobiliary samples, tissue, cell, and macromolecular samples, and even sample slides. These resources may be useful for catalyzing collaborations during the next stage of the Extracellular RNA Communication project.

The VBR is a distributed database system consisting of a hub and a set of local or cloud-hosted nodes. The VBR hub provides an overview of the types and number of biosamples present at the nodes. The hub supports sample queries based on consortium (CSF, hepatobiliary), institution, and on publicly shared metadata about anonymized VBR biosamples, including clinical, radiographic, pathologic, and accession metadata. Lists of samples that satisfy search criteria are placed in a shopping cart for ordering from sample providers. Search criteria and results can be saved for later retrieval and modification. In the current implementation phase (Phase 1) of the biorepository, after selecting samples, researchers communicate directly with each other to make specific arrangements for sharing biosamples. Future improvements (Phase 2) of the shopping cart feature will allow end-to-end tracking of the biosample ordering and exchange process.

VBR nodes are set up independently of the hub and are under the control of sample providers. The ERCC DCC provides assistance regarding maintenance of data within individual VBR nodes using pre-defined metadata templates. Investigators potentially interested in setting up a VBR node to share metadata about their samples may contact the VBR administrator (thistlew@bcm.edu).

Thanks to Laurence de Nijs and the European College of Neuropsychopharmacology (ENCP) for allowing us to adapt their press release into a blog.


 

Individuals affected with PTSD (Post-Traumatic Stress Disorder) demonstrate changes in microRNA (miRNA) molecules associated with gene regulation. A controlled study, involving Dutch military personnel on deployment to a combat zone in Afghanistan, provided evidence for the role of blood-based miRNAs as candidate biomarkers for symptoms of PTSD. This finding may offer an approach towards screening for symptoms of PTSD, and it holds promise for understanding other trauma-related psychiatric disorders. Limitations of the study are that this was a small pilot study, and the findings need to be validated, extended, and confirmed. First results were presented at the 30th conference of the European College of Neuropsychopharmacology (ENCP) in Paris in early September.

PTSD is a psychiatric disorder which can manifest following exposure to a traumatic event, such as combat, assault, or natural disaster. Among individuals exposed to traumatic events, only a minority of individuals will develop PTSD, while others will show resiliency. Little is known of the mechanisms behind these different responses. The last few years have seen much attention given to whether the modification and expression of genes – epigenetic modifications – might be involved. But there are several practical and ethical challenges in designing a research study on humans undergoing such experiences, meaning that designing relevant study approaches is difficult.

A research group from the Netherlands worked with just over 1,000 Dutch soldiers and the Dutch Ministry of Defense to study changes in biology in relation to changes in presentations of symptoms of PTSD in soldiers who were deployed to a combat zone in Afghanistan. In a longitudinal study, they collected blood samples before deployment as well as 6 months after deployment. Most of the soldiers had been exposed to trauma, and some of the soldiers had developed symptoms of PTSD.

For this pilot study, from the initial group, 24 subjects were selected in 3 subgroups of 8. Eight of the soldiers had developed symptoms of PTSD; 8 had endorsed traumatic experiences but had not developed symptoms of PTSD; and another 8 had not been in serious traumatic circumstances and served as a control group. Using modern sequencing techniques, several types of miRNAs for which the blood levels differed between the groups were identified.

MiRNAs (Micro RiboNucleic Acids) are small molecules with chemical building blocks similar to DNA. Unlike the more famous DNA, miRNAs are typically very short – comprising only around 20 to 25 base units (the building blocks of nucleic acids), and they do not code, in other words they do not specify the production of a protein or peptide. However, they have very important roles in biology (every miRNA regulates the expression, and thereby also the activity of several other genes), and they are known to regulate the impact of environmental factors on biology. In addition, brain-derived miRNA can circulate throughout the human body and can be detected in the blood.

Differences in miRNA levels have been associated with certain diseases, such as some cancers, kidney disease, and even alcoholism. This regulatory role makes them also a candidate for investigation in PTSD.

“We discovered that these small molecules, called miRNAs, are present in different amounts in the blood of persons suffering from PTSD compared to trauma-exposed and control subjects without PTSD,” said first author Dr Laurence de Nijs of Maastricht University.

“We identified over 900 different types of these small molecules. 40 of them were regulated differently in people who developed PTSD, whereas there were differences in 27 of the miRNAs in trauma-exposed individuals who did not develop PTSD.”

“Interestingly, previous studies have found circulating miRNA levels to be not only correlated with different types of cancer, but also with certain psychiatric disorders including major depressive disorders. These preliminary results of our pilot study suggest that miRNAs might indeed be candidates as predictive blood markers (biomarkers) to distinguish between persons at high and low risk of developing PTSD. However, several steps need to be performed before such results can really have an impact on the larger field and in clinical practice. In addition to working towards biomarkers, the results may also provide novel information about the biological mechanisms underlying the development of PTSD.”

Dr de Nijs explained:
“Most of our stressful experiences don’t leave a long-lasting psychological scar. However, for some people who experience chronic severe stress or really terrible traumatic events, the stress does not go away. They are stuck with it, and the body’s stress response is stuck in ‘on’ mode. This can lead to the development of mental illness such as PTSD.

These individuals experience symptoms including re-experiencing of the traumatic event through flashbacks or recurrent nightmares, constant avoidance of reminders of the event, negative mood, and extreme arousal. This can manifest itself through insomnia and or hyper-alertness. Individuals with PTSD are six times more at risk of committing suicide and having marital problems, and the annual loss of productivity is estimated to be approximately $3 billion. Currently, there is no definite cure for patients with PTSD, and available treatments often are not effective.”

Commenting, Professor Josef Zohar (Ex-ECNP Chair, Tel Aviv, Israel) said:
“The relevance of a better understanding of stress-related events is unfortunately becoming clearer and clearer after each terror attack. This work points to an innovative avenue regarding the potential identification of risk factors for susceptibility to developing post-traumatic stress disorder.”


Funding: Dr de Nijs was awarded a Marie Curie fellowship grant by the European Union to perform this study, within a network of other expert scientists in PTSD and epigenetics. The Dutch cohort of soldiers (PRISMO) was funded through the Dutch Ministry of Defence.