Month: December 2021

This blog originated as a press release from the University of Houston. Thanks to them for allowing us to repost it here.

Economical, Ultra-sensitive Biosensing in Point-of-Care Applications

When it comes to cancer detection, size matters. Traditional diagnostic imaging cannot detect tumors smaller than a certain size, causing missed opportunities for early detection and treatment. Circulating tumor exosomes are especially small cancer biomarkers and easy to miss. These nanovesicles are composed of molecules that reflect the parental cells. But, because they are tiny (~30-150nm in diameter) and complex, the precise detection of exosome-carried biomarkers with molecular specificity has been elusive, until now.

Wei-Chuan Shih, professor of electrical and computer engineering at the University of Houston Cullen College of Engineering, reports the findings in IEEE Sensors Journal.

“This work demonstrates, for the first time, that the strong synergy of arrayed radiative coupling and substrate undercut can enable high-performance biosensing in the visible light spectrum where high-quality, low-cost silicon detectors are readily available for point-of-care application,” said Shih. “The result is a remarkable sensitivity improvement, with a refractive index sensitivity increase from 207 nm/RIU to 578 nm/RIU.”

Professor Wei0Chuan Shih, University of HoustonWei-Chuan Shih, professor of electrical and computer engineering at the University of Houston, is reporting rapid cancer detection as a cost-effective, high-performance platform for molecularly specific exosome biosensing.

Continue reading